Comments Off

Theriault unvels Maine-themed car design

Posted: Saturday, September 13, 2014 6:00 am

Theriault unvels Maine-themed car design

Associated Press |

PORTLAND (AP) — NASCAR driver Austin Theriault’s car is sporting a Maine-themed paint job in the blue and white colors of the state’s flagship university.

The Fort Kent native’s car, unveiled Friday, features a lobster and a lighthouse on the driver’s side, and a moose, trees and blueberries on the other. The blue and white colors are those of the University of Maine Black Bears.

© 2014 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Subscription Required

An online service is needed to view this article in its entirety.

You need an online service to view this article in its entirety.

Have an online subscription?

Login Now

Need an online subscription?




Saturday, September 13, 2014 6:00 am.

| Tags:

Austin Theriault,



Paul Lepage,

Nationwide Series

Article source:

Comments Off

Organization to design car, help poor countries

Men in Kenya ride in a Basic Utility Vehicle. The Basic Utility Vehicle Baylor organization will design a similar vehicle in competition. The design may be incorportated into future models used in Africa.
Courtesy Photo

By Viola Zhou

As many people in Third World countries walk through hills and ponds in a struggle to get water and goods, engineering students at Baylor University are hoping to make a difference by building vehicles that can bear large amounts of weight and run on rough roads.

The effort is charged by BUV Competition, an event taking place in April next year organized in Ohio by the Institute for Affordable Transportation.

“The organization will design and build a vehicle specifically for solving transportation problems faced by the Third World,” said Flower Mound junior Sarah Johnstone, a mechanical engineering student who is president of BUV Baylor.

Johnstone said this organization is about applying what is learned in class and making a permanent impact on these African people.

“I believe there are a lot of students on Baylor’s campus who have this kind of enthusiasm,” Johnstone said. “But they have no outlet because Baylor has never had a project like this before.”

Dr. Douglas Smith, associate professor of mechanical engineering, is the faculty adviser for BUV Baylor. He said a more durable and cost-effective design of students’ vehicle may be incorporated into cars the competition organizer will manufacture in Africa. It is also possible the students’ original design will be used.

Smith said another benefit to having students participate in this kind of program is they can identify themselves as a part of humanitarian outreach activities.

The organization plans to complete the design in the first half of this semester and finish the whole vehicle before the competition in April. But money and space are the two challenges it is facing now, Smith said.

“We have to get somebody to look into fundraising and see whether we can get enough funds to be able to purchase things for the car,” Smith said. “And we have been looking for a place on campus where students can go between classes and be able to work on the car.”

He said he is confident solutions will be found to get the organization started.
Smith said he first came up with the idea to set up a BUV organization in Baylor because he saw an enthusiasm among engineering students in applying what they have learned to help others.

“It is a perfect fit for Baylor with a Christian mission,” Smith said. “Perhaps students here with a similar mindset are looking for a project they can work on and apply their engineering knowledge to help in some way.”

Johnstone said she jumped on board when she first heard this idea from Smith.

“I’m very passionate about helping people and using my skills to benefit other people and that’s what BUV stands for,” she said. “It’s all about utilizing your skills and applying what you know and doing what you can to help other people.”

The organization already has a design team composed of three mechanical engineering seniors and one electric engineering senior. Many other students have shown interest in participating as news of the project spreads.

Crowley sophomore Joshua Engle, an engineering major, is attracted by the concept of BUV after attending a briefing session.

“It is an organization that really has a practical purpose for humanitarian cause,” Engle said. “You can actually use your engineering skills to help people who don’t have the materials and power to help themselves.”

Johnstone said the membership is not limited to engineering students.

“We are going to accept whoever wants to be involved,” she said. “If they don’t have any experience with tools, somebody can teach them, and they can learn on this project how to build these vehicles.”

Smith said he expects BUV Baylor to last for years, but his first goal is to be ready for next year’s competition in Ohio.

“That would be successful just to get the group together for this common cause of building a car,” Smith said. “But certainly to get a car running in April and compete, that would be excellent.”

Article source:

Comments Off

Ford car makers wear ‘age suits’ to design for older drivers

Among the many new innovations in computerized vehicles, including driverless cars, displayed at the Intelligent Transport Systems conference in Detroit this week, Ford Motor Company is celebrating the 20th anniversary of its “age suit.”

The auto company is designing cars for an aging population by using specialized suits to make anyone’s body feel 20 to 40 years older. The custom-made suit was first developed in the 1990s.

The wearable items add about 14 kilograms and simulate neck stiffness, joint pain, back problems and various eye conditions — issues taken into consideration by ergonomics engineers while conceptualizing new vehicles.  

“It really does give you an appreciation of some of the limitations,” said Nadia Preston, a Ford ergonomics engineer who has worn the suit. “I found just taking simple steps was a challenge, getting in and out of the vehicle.”

She said the third-generation suit helps designers understand the needs of an aging population, while the designs benefit everyone.

“Nobody ever complains the gauges are too large or ‘Wow this is too easy to read,’” she said. “It’s going to serve all walks of life.”

John Piruzza and his wife Giuseppa are celebrating their 50th wedding anniversary with a new Ford Lincoln, and said when shopping for a new car at their age, certain features become a priority.

“If you drive long distances, you have to have a nice comfortable car,” said Piruzza. “You open up the door, it’s nice and heavy, that tells you the car is built solid.”

The CBC’s Lisa Xing tries on a special glove that mimics hand tremors. (CBC )

These are the same issues Scott Ohler, a sales manager at Performance Ford Lincoln in Windsor, said concern older customers.

“Usually they’ll come in with a complaint about a vehicle they currently have—too low to the ground, hard time getting out, we’ll use that as a point of reference and look to make recommendations on what they’re driving currently,” said Ohler.

Each detail of the cars, including the placement of handles and design of the steering wheel, is carefully considered.

Special suit to understand pregnant women

Ford also uses what it calls the “empathy belly,” another suit that helps engineers understand the limitations pregnant women experience in their third trimester.

It also adds 14 kilograms and gives the person wearing it the appearance of being pregnant, while limiting their mobility and comfort.

CBC Windsor’s Lisa Xing give the suit a try. Check out our video as she takes us through the experience.

Article source:

Comments Off

Chandler’s Local Motors debuts 3D printed car this week (Video)

September 8, 2014 — Local Motors co-founder and CEO John “Jay” Rogers talks about his company and their new 3-D printed car.

Chandler-based Local Motors hopes to mass produce this 3D printed car.

Hayley Ringle
Reporter- Phoenix Business Journal


Chandler-based Local Motors is making the first 3-D printed car this week in Chicago using a large-scale manufacturing 3-D printer.

The car is being printed and assembled live at the International Manufacturing and Technology Show in Chicago, the largest machine tool show in the Western Hemisphere, said Local Motors’ co-founder and CEO John “Jay” Rogers. The process started Sunday and will finish Friday.

“We are the first company to make a 3-D printed car using carbon fiber reinforced thermoplastic,” Rogers said. “The seats, body, chassis, dash, center console and hood will all be 3-D printed.”

Check out a time-lapse video during the prototype printing process last week by clicking here.

The low-speed car will run with an electric motor and drive no faster than 40 miles an hour.

The car’s design was chosen from among 200 entries by thousands of voters in the company’s project challenge a month and a half ago.

The winner is Italian designer Michele Anoe, whose Strati model will be made into the first 3-D printed car using the large-scale manufacturing printer.

Watch the video above to learn more about Local Motors’ 3D printed car.

The printer was designed and built in partnership with Local Motors, Cincinnati Inc. and Oak Ridge National Laboratory in Oak Ridge, Tennessee.

The actual printing process takes about 44 hours from one 3-D printer.

If all goes as planned, the car will be driven Sept. 13.

The goal is to commercialize the Strati within the next year and sell it for $30,000, Rogers said.

While a typical car has 25,000 parts, the Strati has just 25 parts, he said.

Hayley Ringle covers technology and startups for the Phoenix Business Journal.

Article source:

Comments Off

Looking ahead: Designing for in-car HMI

In Part 3 we looked at the present and the past — in this section we look ahead into the near future.

Hard and soft interactions

Before we discuss our thoughts on the best approach for in-car interactions, we will touch upon the types of interactions that exist in the in-car environment.

In-car interactions can be split into two distinct types: hard and soft.

Hard interactions can be defined as deliberate manipulative actions performed by the driver. Examples are: changing the drive position using a button, using an infotainment system via a GUI or inputting location data into the sat-nav.

Soft interactions can be defined as the actions performed by the machine as non-deliberate inputs provided by the user. Self-cancelling turn signals are an example of a soft interaction — where the machine autocompletes a sequence of actions without any user input.

The latter type of interaction especially is coming to prominence with the advent of embedded interior sensors and the notion of the connected car. Some of the possibilities have been exploited with contextual information displayed in HUDs (Heads-Up Displays), auto dimming of interior lighting, and even experimental tracking of closed eyelids. As an aside, we feel soft interactions require the greatest amount of care and appropriateness in execution since there is a thin line between being assistive and in being a distraction.

We believe that combination of meaningful hard and soft interactions is the key to getting the best out of HMI in a car.

Hard and soft interactions

In the above sketch we have laid out what could be the set of possible interaction paradigms. This outlines some of our own research into near-future interaction possibilities using current technology. The interaction paradigms are informed by some of our research into the automotive sphere at the present and by predictive analysis such as the “Gartner Hype-Cycle” below.

The Hype Cycle for emerging technologies. Source: Gartner (July 2013)

“A machine is beautiful when it’s legible, when its form describes how it works. It isn’t simply a matter of covering the technical components with an outer skin, but finding the correct balance between the architecture of the machine… and an expressive approach that is born out of the idea of interaction with those using the object.” – Konstantin Grcic (2007), via

We will now delve into each of the above interaction paradigms

A. Haptic controllers with embedded touch surfaces: hybrid interfaces

Let’s take a closer look at the i-Drive controller that BMW employed in the late 2000′s.

Early BMW i-Drive Touch, late 2000′s

In the video above, note the issues with modes — affordance and mapping a circular motion into a linear output on the screen. BMW went on to introduce the improved i-Drive Touch in 2013 to alleviate some of these issues by introducing a touch interface on the control knob itself (as shown in the video below).

This form of hybrid interaction presents a significant improvement because it allows more active and tangible control of on-screen GUI.

B. Touch screens with haptic feedback

Touch screens are being put forward as the sole modes of control in automotive HMI, as demonstrated in the large-screen iterations in the Porsche 918 and the Tesla Model S.

Although they appear to offer a simple alternative, they are in fact problematic with respect to learnability, as discussed earlier. They can also be very distracting, because the driver has to rely on visual feedback all the time and cannot form a muscle memory or map of the controls over time.

An interesting set of experiments being carried out at Disney Research points to the way forward, where tactile rendering algorithms are used to simulate rich 3D geometric features (such as bumps, ridges, edges, protrusions and texture) on touchscreen surfaces.

If applied meaningfully, this could allow a muscle memory or ‘feel’ for controls to develop over time. This technology can be seen at Tactile Rendering of 3D Features on Touch Surfaces.

C. 3D Gesture control with visual aural haptic feedback loops

Using gestures to control certain aspects of HMIs is an exciting concept. This is primarily because it presents an opportunity to bring back the direct control and feedback which existed in early cars, although it is not without problems.

The sensing of 3D gestural data is getting progressively easier, not only because of low cost sensors and processors, but also as better algorithms become available.

3D gesture control as a concept is also taking root in people’s minds, because of gadgets like the Leap Motion and Kinect controllers.

We can detect not just macro changes in physical characteristics, like nodding, facial position and hand gestures, but also micro changes like eye movements. However, the new interaction patterns emerging from low cost computer vision have not been fully cataloged and understood, which poses a challenge when mapping and learning a gestural interface.

There are literally hundreds of 3D gestures possible and it takes time to learn and understand a set pattern and thus in its present state cannot be relied on as a pure interaction — especially with regards to safety.

This was indeed a key issue in our initial experiments using both the Leap Motion controller and the Kinect as primary modes of in-car control. We found, as with any new control, gestural interaction is not necessarily intuitive. The rich feedback of physical interactions — clicking buttons, the movement of levers, gears falling into place — has not translated well into the fuzzy digital space. “Minority Report” style interfaces remain a fallacy (The fallacy of a “Minority Report” style interface).

Also watch a concept using the Leap motion controller as shown below from Denso and Chaoticmoon. There are no buttons — only visual feedback is employed — which introduces the problem of fine grained control and learnability.

This issue with fine grained control has been the focus of research institutions over the last few years and we find this exploration by Disney research to be amongst the interesting ones — ”Aireal — Interactive tactile experiences in free air“.

The AIREAL device emits a ring of air called a vortex towards a user’s hand. The vortex can impart a force on the user’s hand, enabling a range of dynamic free air sensations.

Here they prototype a new low cost, highly scalable haptic technology that delivers expressive tactile sensations in mid air as part of their long term vision for creating large-scale augmented environments which can deliver compelling interactive experiences everywhere and at anytime.

D. Voice controlled Interfaces

Voice based interfaces have occupied imagination ever since the pop culture exposure to the eponymous HAL 9000 and more recently in the movie “Her”. Though we are far from achieving human-like conversations with machines, due to continuous advances in natural language processing and recognition, the last few years have seen a number of high-fidelity consumer applications seeing the light of day (in essence this is a form of AI though some people might argue that it is not — a strong case of the ‘AI effect’ ).

Siri and Google Now in mobile OS’s have also been playing a strong role with in-car interactivity with companies such as Nuance supplying their software expertise to manufacturers such as Ford — seen in their Sync range of HMI.

The promise of voice control lies with two factors, one in replacing physical and digital controls moving into the land of no UI, where one can freely converse with HMI and secondly minimising the distractions which come from the manual operation of HMI, targeting increased safety.

Vocal interaction design — a new challenge

It is easy to say that voice could be a no-brainer in terms of next generation user interfaces, but we need to critically understand implications before designing for the same. In our research we find the following factors (among many) to be quite important to consider;

1. Discrete and continuous control: This is the difference between the on and off states of a button and the continuous rotation of a knob. Voice can play a large role in functioning as an effective discrete control e.g. “turn on radio” or “radio”, but may not be as effective as a continuous control while changing volume, which operates over a range e.g “Increase volume… make it higher… higher…”, as it operates as an abstract, analogue, inexact notion.

We then get into the fuzzy area of actually allowing a user to set presets such that a computer understands what he/she is trying to achieve or time based learning where the computer understands intention by gauging past interactions. e.g. “Higher” can mean increase by 20 percent. This fuzziness could lead to increased confusion and frustration if not dealt with carefully. (An interesting meta study into voice interaction and distraction can be found here).

2. The problem with “Strings” and “lists”: There is a challenge in dealing with the input of strings of sentences (alphanumeric data entry e.g Sat-Nav) and cognitive load it poses on a driver.

Though one would think this is where voice input could be ideal, by eliminating the need to enter text via a keypad, studies point to the contrary. Research carried out at the MIT AGELAB and the New England Transportation Center, point out that the distraction and engagement levels of voice are comparable to that of manual operations and the subjects of the study rated these parts of voice interfaces to be as demanding as using knobs and buttons.

“The destination entry task was the most time consuming, requiring an average of 111 seconds to complete in the first two studies. Task completion time was not a matter of problematic speech recognition, as most of the time the system had little trouble interpreting drivers’ voices. Rather, it was a matter of interface design.” – Seeing voices

The complexities in the interface design arise from many multimodal demands posed by the technology. Among them are having to remember lists of information as spelt out by the interface. One of them is a behavior called the ‘orienting response‘ — which often took the form of subtle, seemingly unconscious shifts in posture as the driver spoke to the HMI. A case of personification of technology.

A way to effectively deal with the above issues as found by the study is by offering appropriate confirmations — both visual and aural. Treating a person as a whole rather than just focussing on targeting the ear and voice.

The orienting response often relies on visual feedback to the verbal input on the driver’s part. For instance, Apple with it’s CarPlay has tried to address the issue by deactivating the user interface whenever possible. But the implications of these modes of automatic behavior on part of the interface have not been studied in detail as yet.

3. Recognising emotion in voice: This seems to be the next step in Natural Language processing — where mood and emotion are triggers for in-car reactions. (Approaches being taken by Google and Nuance)

E. Soft interactions aided by computer vision

The ability of cameras to track micro-movements in pixel data allows sensors in the car’s interior to detect a driver’s physiological data. This can produce both synchronous (real-time) and asynchronous reactions (with a deliberate time delay).

By synchronous reactions we mean immediate and real-time reactions to changes in physiology, like the movement of a driver’s eyelids or reactions to gaze detection.

Infrequent movement can signify a tired driver and thus a car might prompt the driver to take a break or offer the driver directions to the nearest motorway services.

Asynchronous reactions are time-based. For example, tracking a driver’s heart rate over a journey and presenting them with hot spots where there are data spikes. Much like how a car’s fuel consumption over a journey could be mapped and studied, we can study and learn from physiological data.

Capabilities in the new “Kinect” to detect micro-fluctuations in physiological data

Eulerian video magnification for detecting heart rate through non-invasive means.

The Kinect One and ‘Eulerian video magnification’ have both been used to non-invasively measure heart rate (BPM) in a research setting. Happily there is already an element of consumer trust when it comes to such personal metrics — a survey carried out by Cisco Systems revealed that 60 per cent of car owners would be willing to share biometrics such as fingerprints and even DNA samples if it would improve car security.

F. Soft interactions — contextual information on secondary displays supported by eye/gaze tracking

We could break the visual emphasis towards a central console and provide displays for the driver based on when data is required (temporal) and where it is required (spatial).

For instance, information can be broken down into a number of displays, to provide turn-by-turn navigation data when a driver requires it, perhaps using HUDs. This information can also be displayed where the driver is looking, via gaze detection techniques.

What technological implementations have we seen so far?

The first main implementation is the use of secondary displays in cars, like HUDs, for providing information on or near the driver’s line of sight have been in use since the late 1980s.

Landrover Transparent bonnet

The LandRover Discovery invisible bonnet concept is a more recent idea, where a combination of contextual on-road information and actual off-road imagery from grille cameras is viewed through a HUD. Digital immersion through the use of cameras is something we expect to see more and more in in-car HMI, used mainly by augmented reality.

In a similar vein, the BMW “Vision Future Luxury” speaks about the “contact-analogue” HUD for the driver which augments the real-world view by projecting information directly within the line of sight. Buildings, traffic signs and hazards can be highlighted directly in the real-world environment, selectively directing the driver’s attention to specific information.

Then we have gaze detection or eye-tracking displays, where specific portions of the GUI become active depending on where the driver or passenger is looking (spatial reactions). This has the potential for minimising distractions and, coupled with the temporal reactions, can be quite powerful.

It’s early days yet, but quite a few companies are working to integrate trackers into driver assistance systems, tackling issues like driver fatigue, especially for large commercial vehicles. For instance a Caterpillar Seeing Machines collaboration. These systems are built using a combination of software (face and gaze tracking algorithms) and hardware (cameras and processing units to integrate with on-board assistive systems).

In a similar vein, Tobii has eye tracking systems which they have experimented with in cars and games.

Contextual Empathy

We’re still at the dawn of the in-car UI space and it’s worth remembering that there’s more to how you interact with your car than a UI on a screen, as demonstrated previously.

While we do see a future for the screen, and by appropriation, smart devices in in-car experiences for example, a more tailored approach has far greater potential, both in conjunction with and free from any platform bias.

The in-car space needs to mature into something that is as sophistically defined and crafted as that of the smartphone. As with smartphone and app design, context and the user need to be at the forefront of in-car HMI design, but they are so often overlooked. A person driving a vehicle is in a very different situation than a person sitting on their couch at home. This is where the term ‘contextual empathy’ comes from; understanding and designing for a specific situation.

Take maps, for example. Maps and navigation are clearly of use in the automotive space, but that doesn’t mean simply putting a ubiquitous service like Google Maps onto a screen. A driver has far less time to digest a map than a pedestrian, so the selection of which information to display when must be carefully considered. There’s perhaps less of a need to show roads that are not part of the route to the destination. Tom Toms and other such devices have already adopted the same contextual thinking — they are bespoke, tailored devices for the specific context. You certainly can’t send emails or Facetime anyone from them.

“Before you become too entranced with gorgeous gadgets and mesmerizing video displays, let me remind you that information is not knowledge, knowledge is not wisdom, and wisdom is not foresight. Each grows out of the other, and we need them all.” – Arthur C. Clarke

Safety is of course a major consideration which makes designing for the in-car HMI unique to other UIs. Many recent articles have raised safety concerns about screens in cars, namely the potential distraction to the driver (eg Matthaeus Krenn’s excellent A New Car UI Concept). Safety is paramount, but these articles focus on one scenario; that of the driver while they are driving. There’s more to the in-car experience than the driver and more to it than the driving — the automobile and the drive are a romantic and aspirational experience after all. That’s where the importance of understanding context comes back into play.

Encouragingly, during their presentation at the Build Conference at CES 2014, Microsoft acknowledged a difference in what one should expect from driver engagement during a drive versus the stationary context. Though only a prototype, Microsoft seemed to have done some solid field testing with their in-car concept.

An in-car experience will primarily involve the driver, but they won’t always be driving. There’s the getting into and out of the car, the waiting in traffic and a plethora of other situations. How about the person in the passenger seat, the kids in the back and even the family dog in the boot? What about the car that communicates with the city and responds to the environment? A quality, safe, enjoyable and beautiful car HMI will cater for all of these stories and more.

This is a consideration Renault played to in their unveiling of their Initiale Paris model at the Frankfurt Auto Show in 2013. Renault’s HMI housed a rear-seat touchscreen enabling passengers to be part of the navigation, or “journey exploration” process. LandRover’s recent Discovery Vision concept also briefly alludes to empathetic user design, offering variations on the experience for the passengers.

Even with intentions of safety, there will be times when a visual platform, i.e. a screen or HUD, is the best way to communicate.

There are a number of technological and practical ways to facilitate this requirement, everything from the obvious — multiple screens for each passenger, to more abstract ideas such as stereoscopic screens where driver and passenger see different, but relevant information, and gaze detection whereby the system detects who is looking at the screen, with the driver taking priority. These are just a few ideas of many.

So, already we can see that the in-car context demands fresh thinking and design, from both a UX and UI perspective. And this is where so many issues arise in the current approach; a re-appropriation of the (touch) screen into a new context, the “empathy” lost in translation. The UI can help solve these practical and functional issues, but it also goes a long way to resolve some of the emotive problems associated with in-car HMI.

Design can be functional and beautiful

A great car has function and it has beauty, and should excel in both.

Beauty is a commodity in car design, a commodity that is sold so evidently in contemporary marketing campaigns, typically based on the vehicle’s beauty and the lifestyle it can offer. Indeed, the beauty of a car is often favoured over its functionality.

“It is not enough that we build products that function, that are understandable and usable, we also need to build products that bring joy and excitement, pleasure and fun, and, yes, beauty to people’s lives.” – Don Norman

We feel that all design should be as beautiful as it is functional — there is inherent beauty in the purity of function. Dieter Ram’s work for Braun is a great example.

TP 1 radio/phono combination, 1959, by Dieter Rams for Braun

Why not bring the beauty of the car into the HMI, blurring the lines between the car’s exterior and interior design with that of the UI to create one unified piece of design? A UI can be a part of the form of the entire car, not just a simple module or an island of interactivity in the interior.

There are some challenges with this approach. The lifetime of a car production from concept to market tends to be five years or more, so logistically it might be difficult to keep the design thread that runs through different departments intact. This goes someway to explain the sudden emergence of smart devices in cars as we discussed earlier.

“Good design is aesthetic design — The aesthetic quality of a product is integral to its usefulness because products we use every day affect our well-being. But only well-executed objects can be beautiful.” – Dieter Rams – Commandments for good design

However, we believe that if the exterior styling, interior styling, trim and UI design teams work together from the very outset, this unified aspiration is achievable.

In fact, it’s encouraging to learn that Mercedes’ research and development department already utilise teams of designers and researchers with backgrounds in art, design, user experience, engineering, psychology and software to conceive new features and designs under a unified approach (source).

The connected car model assumes a software focussed approach, but there may be further physical and hardware characteristics beneficial to a meaningful HMI. While creating a bespoke HMI for a specific vehicle or a range of vehicles has its challenges, it does ensure that the design does not date during the production lifespan of the car. As design changes are made by other teams during the project, you can react and adapt — this applies to functional, physical and visual design.

We see three main ways in which this process can be facilitated:

1. Design in regular system updates. This can help support the software of the UI, but should not be relied upon. Even if the car had regular and reliable access to the internet so that the OS / UI had systematic updates (a benefit of the mobile device connected car model), you can’t rely on the user taking action on, or even understanding, this process. Furthermore, a sudden change to the software, visually or otherwise, could cause serious safety concerns.

2. Design the HMI and UI in a templated, modular fashion from the start, so that the design can be re-appropriated as the project progresses. This could also help in re-purposing or rebranding the experience for other models, as is already the case for many of the physical controls and is how the car stereo system has worked for years.Do not design for trends but instead design for function and context so that the aesthetic does not age badly, or indeed at all. It is impossible to predict trends five years in advance, nor should you try. Besides, the driver has to live with the HMI and UI for the lifetime of the car far beyond the launch of the vehicle.

3. Do not design for trends but instead design for function and context so that the aesthetic does not age badly, or indeed at all. It is impossible to predict trends five years in advance, nor should you try. Besides, the driver has to live with the HMI and UI for the lifetime of the car far beyond the launch of the vehicle.

Design tends to age badly if it succumbs to a trend. Conversely, there is something enjoyable in associating a car with its era, arguably an inherent part of the automotive experience and heritage. The HMI should be a part of that, as long as it is at one with the entirety of the car’s design.

Best practise should be a holistic focus in influencing the design, which could include accessibility standards and automotive-specific standards, to branding to the context of the environment to traditional design best practices such as layout and hierarchy. Putting some real thinking and commitment into the beauty of the in-car UI is in itself a step forward and something we are particularly excited by.

So what does it take to achieve a functional and beautiful in-car HMI / UI and how does that differ from any other?

This is something we have explored in our studio, both in internal projects and working with one of the world’s leading automotive manufacturers. We will share this in detail in Part 5.

This series of posts, courtesy of ustwo, has been carefully researched and written by a team of passionate designers as well as petrol heads comprising of Tim Smith, Harsha Vardan, David Mingay and Barnaby Malet.

Follow the links below for more in the series:

  • Part 1: The near future of in-car HMI technology
  • Part 2: HMI: Where we are now and where we were
  • Part 3: Looking at now: Changing patterns in HMI
  • Part 4: Looking ahead: Designing for in-car HMI
  • Part 5: Coming soon

Article source:

Comments Off

Fremont police car design wins first place

Posted: Saturday, August 30, 2014 10:00 am

Updated: 1:01 pm, Sat Aug 30, 2014.

Fremont police car design wins first place

Associated Press |

FREMONT, Neb. (AP) — The Fremont Police Department’s new blue-on-black cruiser design is getting attention.

The design, which first hit the streets a year ago when the department rolled out two new Ford Taurus cruisers, was adapted to a new Ford Explorer six months ago, the Fremont Tribune reported ( ).

Subscription Required

An online service is needed to view this article in its entirety.

You need an online service to view this article in its entirety.

Have an online subscription?

Login Now

Need an online subscription?



Or, use your
linked account:

affordable subscription and continue to enjoy valuable local news and information. If you need help, please contact our office at 308 382-1000.

You need an online service to view this article in its entirety.

Have an online subscription?

Login Now

Need an online subscription?



Or, use your
linked account:


Saturday, August 30, 2014 10:00 am.

Updated: 1:01 pm.

Article source:

Comments Off

General Motors To Introduce A ‘Hands-Free’ Car


Well driving just got a bit easier. General Motors Co. (GM) has plans to introduce a Cadillac model that you can drive without using your hands – or feet.

In two years time, the company will release a model armed with a “Super Cruise” feature, which will allow highway drivers to drive without their hands on the steering wheel or their feet on a pedal. During a speech at the Intelligent Transport System World Congress in Detroit, Chief Executive Officer Mary Barra confirmed the technology will take over steering, acceleration and braking at highway speeds of 70 miles per hour or in stop-and-go traffic.

Like Us on Facebook

GM has yet to release the name of the model that host the feature.

Barra also announced that by 2017, GM will become the first automaker to equip a model with what she calls “vehicle-to-vehicle” technology that allows cars to communicate with others armed with similar abilities to warn of traffic hazards and improve road safety. GM will make the vehicle-to-vehicle feature standard on its 2017 Cadillac CTS sedan, and will debut in the second half of 2016.

Barra said during the speech, “With Super Cruise, when there’s a congestion alert on roads like California’s Santa Monica Freeway, you can let the car take over and drive hands free and feet free through the worst stop-and-go traffic around… If the mood strikes you on the high-speed road from Barstow, California, to Las Vegas, you can take a break from the wheel and pedal and let the car do the work. Having it done for you – that’s true luxury.”

But not every is so keen on the idea.

Michelle Krebs, an analyst with researcher in Royal Oak, Michigan says, “There is still a concern by consumers about the safety of their vehicles because there’s been so many recalls. This is going to take a while to win the confidence of consumers.”

The announcement comes at a time when automakers around the world are racing to develop self-driving cars to combat global gridlock and help reduce traffic fatalities. GM’s chief technology officer told reporters there are now upwards of 1.1 billion vehicles on the road worldwide. A recent National Highway Traffic Safety Administration study estimated that the money that the impact of car crashes translates into more than $870 billion a year.

GM also announced that it’s joining with Ford Motor Co, the University of Michigan and the Michigan Department of Transportation to create 120 miles of “intelligent highways” around Detroit. The roads will be equipped with sensors and cameras that enable roads to communicate with cars to alert drivers to hazards and congestion.



Article source:

Comments Off

The Voltéis Philippe Starck designs a car

Bob Flavin

Published 08/09/2014 | 09:00

  • Share

Car design by someone who doesn’t like cars.


s += ‘

Ads by Google


if (google_ads[0].bidtype == “CPC”) {
google_adnum = google_adnum + google_ads.length;

s += ‘

Article source:

Comments Off

2014 LA Auto Show Design Challenge Looks Ahead To 2029


BMW Group DesignworksUSA L.A. Subways, Los Angeles Auto Show Design Challenge

Enlarge Photo

Every year, car designers open their minds for the Los Angeles Auto Show Design Challenge and show off what they think the cars of the future will be like. While previous contests have asked designers to create everything from futuristic police cars to vehicles that exist in harmony with nature, this year’s theme is especially relevant to current industry trends.

The theme for the 11th running of the design challenge is “Sensing the Future: How Will Cars Interact with Us in 2029?” It calls on participants to create a vehicle interface “with human emotion in mind” that can seamless connect drivers and passengers—and all of their technology—to a future car.

ALSO SEE: Watch BMW’S 600-Horsepower M5 ’30 Jahre’ Edition Burn Rubber: Video

Designers will have to ponder the future of the human-machine interface in cars, something that’s very much on the minds of the designers and engineers of current production cars, who must juggle concerns with distracted driving with consumers’ attachment to smartphones.

Eight companies will participate in the 2014 design challenge, including: BMW, Honda (with one team each from the U.S. and Japan), McLaren, Nissan, Peterbilt, Qoros, and SAIC. That Chinese carmaker won last year’s challenge with its single-seat Roewe Mobiliant.

The entries will be judged by a panel of top automotive design experts. Details on each concept will be revealed at the Art Center College of Design Car Classic in Pasadena, California on October 26, and the winner will be announced on November 20, at the end of press days for the 2014 Los Angeles Auto Show.


Follow Motor Authority on FacebookTwitter, and Google+

Article source:

Comments Off

Toyota sees no future for fully driverless car

YPSILANTI, Mich. — Your car soon will do more to help avoid a crash. As for one day leaving all the driving to the vehicle while you relax in back, don’t get your hopes up.

That’s the message from safety executives at Toyota, who on Thursday promised by 2017 to have collision-prevention technology installed across its U.S. line-up, in both mainstream and luxury vehicles.

But for now at least, every vehicle the company designs and builds will require someone in the driver seat.

Toyota expects by “mid-decade” to roll out a next generation of safety systems in the U.S. that allow cars to steer themselves enough to stay in the centre of a lane. And to keep the driver focused on the task at hand — driving — the cars will also feature a camera that monitors the driver’s eyes and makes sure that hands are on the steering wheel. If the eyes drift off the road or hands come off the wheel, the car would issue a warning.

“In other words, a full-time back-seat driver,” Ken Koibuchi, general manager of Toyota’s intelligent vehicle division, said at Thursday’s briefing.

Several other automakers already have lane-steering technology and driver monitoring systems, but often they’re only available in higher-cost or luxury models.

Toyota’s system might eventually have the ability to warn you if your freeway lane is going away, or merging traffic could hit your car. That technology is still being developed and is limited by mapping data nationwide, the safety executives said at a safety briefing near Ypsilanti, Michigan.

The company sees a gradual shift toward cars doing most of the driving work, with each increment helping people to gain trust in the automated systems.

Toyota says the industry is more than a decade away from making a car that could drive itself, due to technology limitations and legal issues. And unlike Google, Toyota doesn’t see the day where a human won’t be needed behind the wheel.

“Toyota will not be developing a driverless car,” said Seigo Kuzumaki, the company’s deputy chief safety technology officer. Humans still will be needed to handle situations that can’t be anticipated by a computer, Toyota executives said.

Toyota and other automakers already have radar-activated cruise control that keeps a safe distance from other traffic and can even stop the car when needed if the driver doesn’t react. The next-generation Toyota system will have more sensitive radar that can see farther and react faster.

Toyota plans to put collision-prevention systems on all cars in its U.S. model lineup by 2017. The systems are likely to include the radar-activated cruise control, although Toyota said details will be released at a later time. The radar system now is available as an option on Lexus and six Toyota models.

Toyota’s safety briefing came ahead of next week’s Intelligent Transportation Society of America World Congress in Detroit, where many automakers and parts suppliers plan to show off new safety technology.

© 2014 The Canadian Press

Article source:

Previous Page

Tag Cloud

4C Aero Ace Alfa-Romeo Automobile Design automotive design Bentley Bicycle BMW BMW M1 Hommage Boat BUGATTI bwm c-x75 car design Code-X Communication concept Concept-Oriented Design concept car Concepts Critical Thinking definition design Design Management Electric epistemology ferrari ff graphic design interation design jaguar metaphilosophy methodology MINI product design prot prototype prototype car Scooter speedboat super sport car universal design Veyron 16.4 Visual communication web design Yacht